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ABSTRACT

DIMENSION DECOUPLED REGION PROPOSAL NETWORK FOR
OBJECT DETECTION

BAYTEKİN, MEHMET CAN
M.S., Department of Information Systems

Supervisor: Prof. Dr. Sevgi Özkan Yıldırım

Co-Supervisor: Assist. Prof. Dr. Yücel Çimtay

Jan 2023, 55 pages

In this work, we propose a dynamic anchor, dynamic assignment region proposal net-
work named DA2RPN to improve the traditional Region Proposal Network (RPN).
Classical Region Proposal Network places a set of pre-determined anchor boxes to
generate object proposals which are later consumed by detection heads to produce fi-
nal results. Problems of the Region Proposal Network are for each feature map point
same anchor boxes are placed and static threshold values based on intersection-over-
union scores are used to label anchor boxes. However, anchors mostly residing out
of the image plane are not that useful to detect objects as objects only reside in the
image plane. On the other hand, anchor box-ground truth box pairs having the same
intersection-over-union values may not be equally useful for the detection of different
objects. One anchor can be the best candidate for that object but another anchor can
be a poor choice for another object even if they have the same iou values. To miti-
gate these problems, we generate a different number of anchors per feature map point
and use a dynamic thresholding mechanism adaptive to the quality of selected an-
chors per ground-truth box. Additionally, to ease the training and to prevent sparsity
caused by dynamic anchor generation we decouple anchor dimensions. Our results
experimented on the COCO dataset show improvements over the Region Proposal
Network.

iv



Keywords: object detection, region proposal network, dynamic anchor box, dynamic
assignment

v



ÖZ

NESNE TESPİTİ İÇİN BOYUTLARI AYRILMIŞ BÖLGE ÖNERİ AĞI

BAYTEKİN, MEHMET CAN
Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Prof. Dr. Sevgi Özkan Yıldırım

Ortak Tez Yöneticisi: Dr. Öğr. Üyesi. Yücel Çimtay

2023, 55 sayfa

Bu tez çalışmasında, derin öğrenme tabanlı nesne testip algoritmalarında sıklıkla kul-
lanılan geleneksel Bölge Öneri Ağı’nı (RPN) geliştirmek için DA2RPN adlı dina-
mik anchoları ve dinamik atama bölgeleri üretebilen Bölge Öneri Ağı önermekteyiz.
Klasik Bölge Öneri Ağı, nihai sonuçları üretmek için tespit katmanı tarafından girdi
olarak alınan nesne önerilerini önceden belirlenmiş bir dizi bağlantı kutuları yerleşti-
rerek üretir. Bölge Öneri Ağı bazı sorunlara sahiptir, bunlar her özellik haritası noktası
için anchor kutularının yerleştirilmesi ve bağlantı kutularını etiketlemek için birleşim
üzerinden kesişme puanlarına dayalı statik eşik değerlerinin kullanılmasıdır. Bununla
birlikte, nesneler yalnızca görüntü düzleminde bulunduğundan, çoğunlukla görüntü
düzleminin dışında bulunan çapalar, nesneleri algılamak için kullanışlı değildir. Öte
yandan, aynı kesişme-birleşim değerlerine sahip bağlantı kutusu-zemin doğruluk ku-
tusu çiftleri, farklı nesnelerin algılanması için eşit derecede yararlı olmayabilir. Bir
çapa, o nesne için en iyi aday olabilir, ancak başka bir çapa, aynı iou değerlerine sa-
hip olsalar bile, başka bir nesne için kötü bir seçim olabilir. Bu sorunları azaltmak
için, özellik haritası noktası başına farklı sayıda çapa üretiyoruz ve yer gerçeği ku-
tusu başına seçilen çapaların kalitesine uyarlanan dinamik bir eşikleme mekanizması
kullanıyoruz. Ek olarak, eğitimi kolaylaştırmak ve dinamik bağlantı oluşturmanın ne-
den olduğu seyrekliği önlemek için bağlantı boyutlarını ayırıyoruz. COCO veri seti
üzerinde denediğimiz sonuçlarımız, Bölge Öneri Ağı üzerinde iyileştirmeler göster-
miştir.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Object detection is extremely popular and highly demanded topic in the defense and
retail industry to reduce human workforce and human based errors. Due to advances
of imaging technology, the images have high quality resolutions. However, traditional
image processing techniques are not sufficient to interpret these images.

As a result of the high resolution of the images, the images have more features. The
learning based algorithms can learn the patterns from these features and can produce
meaningful results to meet the industry’s needs. Deep Convolutional Neural Net-
works are designed to extract features from frames and to analyze the images in every
aspect.

These extracted features are very rich in terms of object information in the image.
However, using only Deep CNNs without proposed regions has reduced the accuracy
of object detection. Region Proposal methods try to determine where objects can
locate to produce better quality proposals. If the generated proposal has a higher
chance to contain objects, the learning based method performs well in the training
and test process.

Although with great improvements in the Deep Learning area, the models can still
have problems with objects that have different aspect ratios. Due to region proposal
methods using pre-determined fixed size anchor boxes, the generated object proposals
cannot include all objects that are very long and wide.

In the real life images or videos, often objects are located in the center of the frame
and the scene has a lot of different kinds of objects with complex backgrounds. An-
other problem with the region proposal methods is using a fixed number of anchor
boxes for images’ all pixels without separating cases if the pixel is located in corners
or center. The produced anchor boxes from the corners of the image, mostly don’t
have the objects and unnecessarily consume the memory and power of the GPU.

To solve these problems that we mentioned above, we proposed a new method called
Dimension Decoupled Region Proposal Network for Object Detection. The intro-
duced model has dynamic anchor generation and dynamic label assignment modules.
In literature, the former proposed region based methods use MS-COCO and Pascal
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VOC datasets to evaluate their model’s performance. To make a fair comparison, we
evaluate our method with these datasets.

1.2 Scope of thesis

This thesis proposes a developed new method and will benefit the studies on this
subject in 3 aspects. the first of these is dynamic anchor generation. In this way,
different numbers of anchor boxes are proposed in different locations. the other one is
label assignment, the model will eliminate negative examples and learn from positive
examples. the third method aimed to obtain more accurate results by learning the
widths and lengths of the anchors separately. As a result of this, also the model
complexity is decreased.

1.3 The Outline of the Thesis

In Chapter 2, object detection subject is investigated and the state-of-the-art models
are explained.

In Chapter 3 the method that we proposed Dimension Decoupled Region Proposal
Network for Object Detection is explained in detail.

In Chapter 4 The results of proposed method are investigated and compared to other
state-of-the-art models.

In Chapter 5, the conclusion is shared about proposed method.
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CHAPTER 2

OBJECT DETECTION

2.1 Related Works on Object Detection

Identifying objects from images or frames of videos is a very common and highly
attractive attention problem for many industries like defense, surveillance, retail and
automated systems. To detect and classify objects, formerly traditional image pro-
cessing techniques [25] [26][27][28] are applied. Apart from classical image pro-
cessing methods [29][30][31][32] also neural networks [33][34][35][36] use for im-
age classification task [37][38][39][40] and object detection task.

Figure 1: Architecture of basic neural network. Taken from [1].

In 1940s, the studies started on artificial neurons [41][42][43] for computational mod-
els [44] and in 1960s first many layers artificial neural network [45][46][47] proposed
and first time used functionally for data handling [48][49][50].

Artificial neural networks, shown in Figure 1, could learn patterns [51] [52] and give
information about images. Image processing methods were improving but still not

3



sufficient for classifying all objects on target frames. The importance of knowing
which objects are in a certain image was increasing with a growing economy.

Independently for image processing methods, probabilistic [53][54] and learning based
methods [55] are used for image classification. The problem can be solved in two gen-
eral ways offered as supervised [56][57][58] and unsupervised learning [59][60][61]
classification. In an unsupervised way, the data doesn’t have labels, the algorithms
calculate distances between vectors [62] and try to cluster the data.

In 1997, Paul Scheunders applied a clustering algorithm to an image in the article A
genetic c-means clustering algorithm applied to color image quantization [63]. The
most commonly used unsupervised algorithm is K-Means [64][65][66].

K-means is a tremendously simple and fast way to cluster the points in the space. All
distances are calculated between elements and the as a result of this, the elements
are assigned to the center points. Therefore, images which have very similar image
primitives, belong to the same cluster and classification is done. An example result
of the K-Means algorithm is shown in Figure 2.

Figure 2: Basic K-Means algorithm example on medical image (a), after applied K-
Means clustering (b). Taken from [2].

On the other hand, if the data is labeled, the labels and images feed the algorithm
during the learning process in the supervised classification. Support Vector Machine
[67][68] concept is a strong mathematical way to classify both linear and non-linear
data. SVM turns the data into multi-dimensional space and calculates marginal dis-
tances between vectors. Therefore, the algorithm divides the data into classes with a
hyper-plane, see in Figure 3. If the data is non-linear Radial Basis Function is applied
to the algorithm and the solution is performed with SVM.
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Figure 3: Binary classification example with SVM algorithm. Taken from [3].

In 1995, Cortes C. clarified the learning of Support Vector Machines and Survey on
SVM and their application in image classification is detailed in this article. SVMs can
work on very large and very small datasets and are also highly preferred algorithms
in different domains as a result of their pace.

Figure 4: Multi-class classification with SVM (b) on multi-spectral image (a), Taken
from [3].

Another efficient way to image classification performing K-Nearest Neighbor algo-
rithm [69][70] that is a non-parametric statistical way to apply for classification and
regression [71] problems. Since K-NN is distance based method, first of all, feature
scaling is applied to the data and distance based processes are applied later. The main
logic of the algorithm to calculate the distance between the neighbor’s features and
try to find the most similar classes. KNN and SVM can achieve success on small
size datasets and are easy to apply with programming languages. KNNs are showing
more accuracy compared to SVM on multi-class label problems. KNN classification
example is shown in Figure 6.

5



Figure 5: Original remote sensing image before K-NN algorithm applied, Taken from
[4].

Figure 6: KNN classification results on Figure 2.6, Taken from [4].

In the 1980s, convolutional neural networks were proposed and in 1989 Yann Lecun
used that method for handwritten digit recognition [72]. After this date, artificial
neural networks gained momentum in the usage of classifying images.
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Figure 7: CNN Architecture, Taken from [5].

In CNN-based classification problems, features are extracted [73][74] from image
applying layer operations to aim to increase the pixel’s nonlinearity. After under-
standing of CNN is a powerful method to classify images, LeNet [75] is proposed by
Yann Lecun for classifying handwritten letters. LeNet consists of 7 layers and accepts
32x32 pixel image, given in Figure 8. Layers have operations called average pooling
[76] and activation function [77][78] for extracting features. However, this method is
not much efficient.

Figure 8: LeNet Architecture, Taken from [6].

With improvements on technology, codes started to work faster on Graphics Process-
ing Units(GPUs). Thanks to GPUs, CNNs architectures are designed deeper and more
efficiently.

In 2010s, AlexNet [79], ResNet [80] and VGG [81] methods are published and image
classification problem performs huge improvements. AlexNet is shown in Figure 9.

ResNet and VGG networks have huge importance for convolutional neural networks,
these algorithms are widely used as the backbone for the other neural networks. Two
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Figure 9: AlexNet Architecture, Taken from [7].

of them have many hidden layers to extract features. The architecture of these algo-
rithms is given in Figure 10.
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Figure 10: VGG-19 Architecture on the left, 34-layer CNN on the middle, ResNet on
the right. Taken from [8].
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After huge improvements in image classification, as another problem object detection
started to solved easier. The main focus on object detection with CNNs [82] is first
to classify the image and apply localization to find object’s exact location. Then,
classified features take as a input for other layers and localization solutions apply to
them. The learning based object detection methods are grouped under two titles, One
stage object detection and two stage object detection methods.

2.2 One Stage Object Detection Methods

One stage object detection models are aiming to find object’s class and coordinates
with just one passing on the neural network. There is no need to feature extraction or
proposed regions formerly.

Figure 11: SSD Architecture. Taken from [9].

2.2.1 Single Shot Detector

In 2016, Single Shot MultiBox Detector(SSD) [9], a model is designed by Erhan
which is able to detect objects in real time from video captures. SSD uses convo-
lutional neural networks to only extract features. Different from the former applied
models, SSD doesn’t use the CNNs for generating anchor boxes [12][14]. Firstly, the
image or frame is given to the backbone, which is mainly a CNN to use for feature
extraction, and the backbone reduces the image’s size and creates meaningful features
for the other convolutional layers, the architecture is shown in Figure 11.

The SDD model consists of one backbone and 6 convolutional layers. After the first
feature extraction, the convolutional layers are fed by feature maps [83][84]. Every
convolutional layer takes the feature maps, which is the output of former convolu-
tional layers, as input. The feature maps’ sizes are getting smaller by layer to layer.
To generate anchor boxes, default 4 boxes are assigned to every object on the image
during training. The anchor boxes are shown in Figure 12.

At the end of the model, 7 feature maps are created by layers and backbone and the
algorithm generates boxes on the different size feature maps. When the ground truth

10



Figure 12: (a) Ground truth of images, (b) 8x8 feature map with anchor boxes, 4x4
feature map with anchor boxes. Taken from [9].

objects are read, the model try to minimize loss between the ground truth object’s
coordinates and the generated anchor boxes’ location. Because of having many dif-
ferent size feature maps, the model has a higher chance to find large scale objects. The
convolution filters are applied to the feature maps, after that, the confidence score of
boxes is calculated in a way of classification and regression. At the end of the model,
the non-maximum suppression is applied the all feature maps to eliminate and de-
tect the same object over and over. SSD performs better on low resolution images
and large scale objects against small scale objects. To improve small object detection
results, the default boxes’ size is had to be smaller.

2.2.2 You Look Only Once(YOLO) Family

The first proposed one stage object detector is YOLO(You Look Only Once) [10].
As a real time object detector, YOLO tries to solve localization problems like simple
regression problem and doesn’t have a special network or method to generate anchor
boxes. Only one CNN is used for classification and localization, this is the main
reason why YOLO is capable of working real time as a detector. For this reason, the
algorithm uses two different loss functions [85][86], one for the localization measures
the difference between the object’s ground truth’s location coordinates. The summary
of YOLO is shown in Figure 13.
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Figure 13: Input and output of YOLO algorithm. Taken from [10].

The other one is for measuring the difference between the ground truth class and the
predicted class of the object. During the training, the algorithm tries to minimize the
loss function. The meaning of the loss function’s decreasing, the code is learning
the difference between real values and predicted values. When the image is given to
CNN, the image is divided by SxS grid by the algorithm and if the grid cell contains
the center point of the object, that cell is responsible for finding the object’s location
and probability of the classes, the process is shown in Figure 14.

Figure 14: Grids and bounding boxes of YOLO algorithm. Taken from [10].

When the confidence is calculated, the probability of objectness score and IOU be-
tween gt and the predicted box is multiplied. Each box prediction has five values x, y,
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w, h and the probability of the value. The YOLO consists of 24 convolutional layers
and 2 dense layers. In YOLO, immediately after dense layers, the sigmoid activation
function [87] is applied to the outputs to obtain values between 0 and 1. This allows
the algorithm to make probabilistic predictions, where the predicted values represent
the probabilities of different classes or events, the architecture is shown in Figure 15.

Figure 15: Architecture of YOLO algorithm. Taken from [10].

In 2016, Joseph Redmon published the Yolov2(YOLO9000) [11], which is an im-
proved version of Yolov1 algorithm. YoloV2 takes the title of the state-of-the-art
real time object detection subject. The different techniques are tried on Yolov2 and
significant improvements are observed. The structure of YOLOv1 is changed and
Darknet-19 is used for feature extraction, the architecture is shown in Figure 16.
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Figure 16: Input and output of YOLO algorithm. Taken from [11].

The Darknet-19 consists of 19 convolutional layers and five maximum pooling oper-
ations. After every convolutional layer, batch-normalization is applied to the output
and this operation is make more successful the algorithm 2 percent. Batch normaliza-
tion is a technique that is simple and very effective. Mainly focused on normalizing
the inputs by subtracting the mean and dividing by the standard deviation. This makes
us to ensure, the inputs have a mean of zero and a standard deviation of one, which
can help the network to converge faster and make the network more stable. The other
improvement has occurred using higher resolution images while training and accu-
racy increased by 4 percent. The input images are divided into grid cells and assigned
5 anchor boxes for each grid cell. The model is trained with COCO [23] and Ima-
geNet [88] datasets with different size images and a total of 9418 classes. Thus, the
variety of images provides more accuracy for the model.

YOLOv3 [89] is proposed by Redmon in 2018. There are two small changes from
Yolov2. Darknet-53 is used for the backbone instead of Darknet-19. The other one is
adding IoU to loss function,
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2.3 Two Stage Object Detection Methods

The feature extraction is the basis of the deeper convolutional neural networks. On
image classification problems, feature extraction is applied to the whole image. First,
features are extracted and then these features are given into CNNs.

2.3.1 R-CNN Family

Figure 17: 1.Input Image, 2.Extracted Features, 3.CNN, 4.Classify Head. Taken from
[12].

In 2014, Ross Girshick et al. [12], developed a method called Rich feature hier-
archies for accurate object detection and semantic segmentation(R-CNN). R-CNN
has two parts. The main parts of the algorithm are shown in Figure 17. First part
tries to find where objects are located on an image by applying selective search [13].
The selective Search algorithm generates 2000 object candidate boxes for every im-
age, object candidate boxes are called region proposals. These region proposals are
rescaled and fit in the same size as each other. After that, CNN is fed by these regions
to classify images and object detections. The features, extracted by CNN, are given
to SVM classifiers and bounding box regressors. Thus, the class of regions and boxes
is identified. The R-CNN method is successful with its new suggestions. However, it
doesn’t work in real time due to regions are classified per image and it takes 47 sec-
onds per image. For this reason, Ross Girshick evolves his own method and published
in 2015 Fast R-CNN model [14].

Selective Search is a method for finding objects on the image. First introduced in
2012 Uijlings et Al. The algorithm generates boxes that are candidates to contain
objects. Selective search based on two strong methods exhaustive search [90] and
segmentation [91]. Exhaustive search strives to locate every viable place by method-
ically listing all potential candidates. Segmentation is a way to determine candidate
pixels to represent objects. Firstly, segmentation is applied to the input image and
the similarity of each pixel is calculated with every adjacent pixel. During this calcu-
lation process, color, texture, size similarity and shape compatibility are involved in
the process. Then, the final similarity is calculated. When the algorithm repeats these
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steps after by after, region proposals are created by method. This operation is called
the hierarchical segmentation process. A selective search example is shown in Figure
18.

Figure 18: Selective search applied (a) and (b) images and the final results are dis-
played. Taken from [13].

Fast R-CNN have improvements on R-CNN’s problems like slowness and high cost
of training and inference process. The Fast R-CNN model takes images as CNN in-
put for feature extraction instead of using proposed regions by selective search. The
model introduces a new pooling method named as RoI Pooling. Also, candidate ob-
ject proposals are generated from image and it is called regions of interest(RoI). The
RoI pooling takes the extracted features from CNN and generated region of interest
from an image as an input and outputs them as a fixed sized features map. Fully
Connected Layers is fed by these feature maps to produce RoI feature vectors. On
the last step of Fast R-CNN, respectively fully connected layer, softmax activation
function and box regressor are applied on RoI feature vectors and the model gets the
predictions. In this way, the accuracy and speed of the new model pass the R-CNN
model. The inference time is reduced from 47 seconds to 2.3 seconds per image with
Fast R-CNN improvements. The enhanced architecture is shown in Figure 19.
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Figure 19: CNN takes the image as input. From one image both features and RoIs
extracted. Taken from [14].

Faster R-CNN. Although there is huge progress in inference time, still the Artifi-
cial Intelligence community doesn’t have models which are working in real time. In
2015 Shaoqing Ren developed a new model based on Fast R-CNN [15] and named
Faster R-CNN. It is a nearly real time working object detector and gives output in
0.2 seconds per image. The model offers a new method for extracting region pro-
posals. Instead of using the traditional selective search method, which actually is
significantly slow, offers a using CNN for proposing objects. Similarly, on Fast R-
CNN, A CNN takes an image as an input and extracts features, see in Figure 20. After
that, these features are fed to the new CNN, called Region Proposal Network(RPN).
The high quality region candidates are proposed by RPN and the pooling operation
is applied with other features that come from former CNN. After the ROI pooling
operation classification layers are fed by these feature maps and the prediction scores
and bounding boxes are obtained.
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Figure 20: Faster R-CNN architecture. Taken from [15].

2.4 Anchor-Based Methods

In the object detection problem, the goal of the model is to identify the type and find
the locations of objects in a frame. Generally, the successful algorithms proposed to
generate random or specified size candidate squares or rectangles on the image. The
model learns the patterns from combined generated anchor boxes and the extracted
features from the image. Therefore, the score of the predictions is increased.

The algorithms are gained advantages by using anchor based methods. Giving the
anchor’s standards to the model provides huge simplicity in a way of memory usage,
thanks to fixes sized anchors, the algorithm doesn’t use to memory for generating
anchor boxes from scratch each time. The anchor’s standards can be fixed to every
individual dataset if the dataset contains small, medium or large size objects. When
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the size of anchor boxes is similar to the object’s size, the algorithm can learn more
accurately.

2.4.1 RetinaNet

In 2017, Tsung-Yi Lin et al proposed an anchor-based method RetinaNet [16] which
is very similar to the working style of the human visual system and organ called
the retina. RetinaNet is an algorithm that consists of one backbone and two CNN.
The backbone, which is responsible for extracting the image features has two parts.
The first part of the backbone is called ResNet, the main mission of the ResNet is
extracting multi-scale feature maps and feeding the next part of the backbone which
is called Feature Pyramid Network(FPN). FPN’s aim is to generate different sizes of
anchor boxes. The FPN has five layers and upsamples the extracted features between
these 5 layers. FPN architechture is shown in Figure 21. Each layer is also responsible
for generating different scale anchor boxes.

Figure 21: RetinaNet use as a backbone (a) ResNet and (b) feature pyramid network.
Extracted features from these backbones followed by two separate subnets: (c) class
subnet and (d) box subnet. Taken from [16].

The anchors are fixed in the size of given [32,54,128,256,512] respectively on the
pyramid’s layers and also different aspect ratios are applied for each size anchor
[1:1,1:2,2:1]. Thus 15 anchors are generated for each location. As a result of this,
RetinaNet has the capability of detecting objects on different scales. Some of the
anchor boxes’ size exceeds the size of the image, for this reason, these anchor boxes
are ignored. The outputs from every layer of FPN are taken as the input of the clas-
sification and regression subnet. Both the subnets are attached to FPN’s every layer
and these subnets consist of four 4x4 fully connected layers. For the first three layers’
output, the ReLU activation function [92] is applied, in contrast to the fourth layer.
The sigmoid activation function is applied for the last layer.

The other proposed method in this work is focal loss [16]. Focal Loss is used on
the classification subnet for providing more accurate learning activity. It is proposed
to solve the class imbalance problem which is based on object detection datasets on
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classification tasks. The cause of the imbalance classes problem is the image could
contain several objects. However, the model has to focus on the main object that is
desired to be learned. The other objects learn as a background of the image. If there
are many background objects, the model cannot converge the foreground object and
the algorithm shows poor performance for some foreground objects.

RetinaNet proposed to use the Focal Loss Function used in the issue of class imbal-
ance. The model has gained a huge advantage when the dataset has more negative
samples compared the positive samples. Simply, the focal loss reduces the weights of
easy to detect objects and focuses on harder cases.

The model evaluates every anchor box to predict the probability of if the anchor box
has obtained an object or not. Then the algorithm assigns a label to each anchor box.
If the anchor box has an object, the label of this image is assigned as 1. Otherwise
0. Then, the calculated probabilities of anchor boxes multiply by the weights. If the
probability is close to 0, the weight is large. The probability is high, the weight is
small. The model calculates the final focal loss by summing the weighted losses for
all anchor boxes and averaging them.

Basically, focal loss improves the accuracy of object detection algorithms by up-
weighting the loss for challenging examples and down-weighting the loss for simple
examples (those with a low predicted probability). This enables the model to better
handle the class imbalance between positive and negative instances and to concentrate
more on the difficult examples, which are frequently the most crucial for the task.

2.5 Anchor-Free Methods

Anchor free methods are as known as cost-friendly methods and their algorithms are
designed without using anchor boxes as can be understood from the name of the
method. The algorithms try to find an object’s location, height and width using one of
the pixels, grid or key-point based calculations. Not designing anchor boxes before
or during the training is a beneficial way to implement more lightweight models. As
a result of design-free anchor methods, the computational complexity and memory
requirements are reduced.

2.5.1 CenterNet

In 2019, CenterNet [17], a very innovative model to detect objects, is introduced. In
contrast to former traditional methods, the proposed algorithm focuses on the center
of the objects, the objects represent a point in the whole image. The model consists of
one backbone and two similar structures to estimate the location center and corners of
the objects, shown in Figure 22. One of the structures focus on center pooling and a
center heatmap to find the center of the object, the other one is responsible for finding
corner by applying corner pooling.
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Figure 22: CenterNet’s backbone is an hourglass network and produces embeddings
and offsets. Taken from [17].

2.5.2 CornerNet

CornerNet [18] is proposed by researchers from Carnegie Mellon University as an
anchor-free algorithm to detect and classify objects from images or videos. The algo-
rithm tries to find the location of the object using paired key-points, the pairs consist
of the top-left corner and bottom-right corner. Thus, there is no need for using anchor
boxes. The CornerNet has a simple architecture with one backbone and two different
prediction modules which contain CNNs. The Hourglass Network is used as a back-
bone, formerly it is used on human pose estimators. It can be one or more hourglass
modules and it is actually a fully convolutional neural network. Two hourglass mod-
ules are used in this algorithm. The modules are used respectively, the images are
given as input to the first hourglass.

Figure 23: CornerNet’s design consists of one hourglass network and two prediction
modules for top-left corners and bottom-right corners. Taken from [18].

The hourglass network, (See in Figure 23) first downsamples the inputs by applying
the CNNs and max pooling layers. Then, the upsampling operations are performed to
the reduced features. As a result of this, the model learns the global and local features
of the image. After two hourglass network, two different modules tries to predict the
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top-left and bottom-right corners’ coordinates and extracts heatmaps, embeddings and
offsets. To make sure to find the corners, the Corner Pooling operation is performed
on heatmaps, embeddings and offsets. Helping of these elements and loss function,
the algorithm learns where is the image’s corners.

2.5.3 Fully Convolutional One-Stage Object Detection(FCOS)

One-stage object detection technique FCOS [19] (Fully Convolutional One-Stage Ob-
ject Detection) seeks to achieve better accuracy and can work on real-time. The idea
was initially put out by Facebook AI researchers in their work "FCOS: Fully Convo-
lutional One-Stage Object Detection," and it has subsequently grown in acceptance
in the computer vision community.

Figure 24: FCOS learns the object’s location pixel based distances without anchor-
boxes. Taken from [19].

FCOS employs a fully convolutional network for object detection, which implies that
there are no fully connected (fc) layers in the network; this is one of the main char-
acteristics of FCOS. In jobs requiring object detection where the size of the input
picture might change, this enables the network to accept input of any size and provide
the output of the same size. The detected objects by FCOS is shown in Figure 24.

In FCOS, a regular grid of anchor boxes—pre-defined boxes with varying sizes and
aspect ratios—is used to anticipate item positions and class probabilities at each point.
The network predicts if each anchor box contains an item and, if yes, to which class
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it belongs by placing the anchor boxes over the input picture at regular intervals.
The generated bounding boxes for the items in the image are then surrounded by the
expected positions and confidence score of the class.

Figure 25: Architecture of FCOS. Taken from [19].

FCOS’s ability to handle objects of diverse sizes and aspect ratios better than other
single-stage object detection techniques like YOLO is one of its benefits (You Only
Look Once). The reason for that is the FCOS makes use of a collection of anchor
boxes with various scales and aspect ratios, enabling it to more accurately match the
size and form of the objects in the image.

The fact that FCOS does not need many stages of computation to obtain the final
detections makes it more efficient than two-stage object detection techniques like R-
CNN (Regional Convolutional Neural Network) and its variations. As a result of this,
it works well in applications that require real-time object identification and where
speed is an issue.

In conclusion, FCOS is an anchor-free object detection approach that estimates item
positions and class probabilities at each place in a regular grid of anchor boxes using
a fully convolutional network, shown in Figure 25. It is more efficient than two-
stage object identification techniques and good at handling objects of diverse sizes
and aspect ratios, making it appropriate for real-time applications.

2.6 One Stage Object Detectors and Two Stage Object Detectors

There are two distinct methods for object recognition in computer vision: one stage
object detectors and two stage object detectors.
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One-stage object detectors are made to quickly identify the type and position of items
in a picture in a single step. To analyze the full image and make a direct prediction
about the type and position of objects, they employ a convolutional neural network
(CNN). Due to the lack of a separate proposal generation process, one stage detectors
are often quicker and more effective than two stage detectors. As a result of that, they
are unable to alter their initial predictions of the objects,they could not be as precise
as two stage detectors. YOLO and SSD are widely known and most used one stage
object detectors.

Objects in a frame are found using a two-step method by two stage object detectors.
They create a group of candidate object proposals in the first stage, which are areas
of the image that are like to contain an object. Using the produced proposals, they
categorize and fine-tune the position of the objects in the second stage. Because they
have the chance to improve the object suggestions before making the final prediction,
two stage detectors are usually more accurate than one stage detectors. The detections
of SSD and Faster R-CNN are compared in Figure 26. Generating region proposals
have huge importance with the role of highly accurate object detection. Generally,
two stage object detectors are implemented based on R-CNN model.
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Figure 26: Comparing SSD and Faster R-CNN detection results on images. As it can
be understood, Faster R-CNN performs better on smaller objects. Taken from [20].

In Conclusion, the decision of which method to employ is based on the specific de-
tails of the application, such as the needed speed and accuracy. A number of object
detection benchmarks have shown that both one stage and two stage object detectors
perform efficiently. However, by using optimal parameters, two-stage object detec-
tor’s accuracy is better.
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2.7 Anchor Based Methods vs Anchor-Free Methods

Except for one stage and two stage detectors, there are other methods in order to
recognize and localize objects in photos or videos. Also, anchor-based and anchor
free based methods have great results for object detection.

The spatial extent of objects in the picture is represented by predetermined anchor
boxes using anchor-based approaches, also referred to as two-stage object detectors.
The dimensions, aspect ratio, and location of these anchor boxes are determined by
a grid of cells that divides the image into several parts. To better match the size and
form of the objects in the training data, the model modifies the parameters of the
anchor boxes during training. The algorithms employ the anchor boxes to provide
object suggestions at the time of inference, which is subsequently improved using
further convolutional layers and scored to produce the final object detections.

Anchor-based systems have trouble reliably detecting objects with a wide range of
sizes and forms, although reasonably quick and effective. The model must be trained
for a predefined set of object sizes when using anchor boxes, which might restrict the
model’s flexibility and ability to adjust to new tasks or data.

On the other hand, anchor-free approaches directly forecast the bounding box co-
ordinates of the image’s objects rather than using predefined anchor boxes. These
techniques are frequently one-stage, which means they complete the duty of object
detection in a single pass without the need for a subsequent proposal generating stage.
Since they don’t rely on predetermined anchor boxes and can find objects of any size
and form, anchor-free approaches have the potential to be more versatile and flexible
than anchor-based methods. However, because they demand additional calculations
from the model at inference time, they could be a little slower and less effective than
anchor-based techniques.

The selection between anchor-based and anchor-free approaches will ultimately come
down to the particular requirements of the work at hand, including the complexity of
the objects being identified, the available processing resources and the required speed
and accuracy of the object detector.

2.8 Region Proposal Methods

In order to construct a list of possible bounding boxes or regions, that are most likely
to contain objects of interest, region proposal methods are performed for object detec-
tion. These techniques help object detection algorithms operate more effectively by
lowering the frequency of false positives. Using Region Proposal methods increases
the accuracy of the model. Generally, the CNNs are fed by region proposals and the
algorithm learns from more meaningful extracted features.
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2.8.1 Selective Search

Selective search is a frequently used technique to generate region proposals on the
area of object detection. The algorithm proposes the possible region by classifying
the pixel according to its attributes like color, texture, size similarity and shape com-
patibility.

2.8.2 RPN

Region Proposal Network is a specially designed network for producing object pro-
posal boxes. The network consists of two parts. The first part is the feature extractor,
the image is taken as an input to the convolutional layer and extracted features are
created. Then, the region proposal layer generates the proposed region using these
extracted features. There are several specific methods for generating proposal boxes.
Region Proposal Boxes are shown in Figure 27.

Figure 27: Example of proposed boxes from RPN. Taken from [21].

2.8.2.1 Iterative RPN

The Iterative Region Proposal Network method [22] is proposed for the increasing
quality of the generated object proposals. The algorithm uses an iterative process
for proposal generation, the architecture is given in Figure 28. The iterative term
comes from the process of repeatedly creating proposals and improving them until a
complete set of object detections is achieved.
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Figure 28: Example of Iterative RPN. Taken from [22].

By swiping a small window across feature maps taken from the input data and ranking
each window based on how likely it is that it includes an object, the RPN creates
proposals. This procedure is usually done several times, with the RPN changing the
settings of the scoring function and the window’s size and position to produce a larger
number of recommendations.

2.8.2.2 Cascade RPN

The Cascade Region Proposal Network [22] is an architecture of CNN that aims to
generate better quality region proposals and improve the accuracy of object detection
(See in Figure 29).

The introduced model consists of two parts. The first part is a backbone. Backbone
is responsible for extracting features of the input image and ResNet50 is used as a
backbone. This CNN is responsible for generating region proposals. The cascade
RPN uses the predefined anchor boxes, the size of the anchor boxes and aspect ratios
is determined before the training.
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Figure 29: Architechture of Cascade RPN. Taken from [22].

The second stage is the refinement stage and takes the region proposals generated
by the first stage as input. This stage tries to increase the quality of the proposals
and find the location and class probability of the object. The layers calculate the
difference between the proposed regions and the object’s ground truth. Thus, the
algorithm learns how it can refine the predicted boxes. After the refinement process,
the regressor and the classifier heads predict the location and the class score of the
object.

To sum up, Because it incorporates the benefits of both anchor-based and anchor-free
techniques, the cascade RPN design enables an improved object detection procedure.
Many object detection systems, including the well-known Faster R-CNN method,
have utilized it.
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CHAPTER 3

DIMENSION DECOUPLED REGION PROPOSAL NETWORK FOR
OBJECT DETECTION

3.1 Method

In this section, we first summarize Region Proposal Network and mentioned the an-
chor mechanism that we propose to generate dynamic number of anchors. After that,
we show the decoupled network architecture that enables us to predict anchor classes
and regression values. Later, we describe the algorithm assigning positive/negative
labels to the anchors for training supervision. Finally, how proposals are generated
by merging results is explained.

3.1.1 Region Proposal Network

Region Proposal Network is a CNN aiming to find object proposals with higher qual-
ity compared to the other methods. RPN takes feature maps and their objectness
scores for each as an input of CNN and after passing layer to layer. Sliding opera-
tion is performed on feature maps, sliding sizes must be NxN dimension, the CNN
layers are fed by these sliding windows. After one layer is performed, the features
are going through two layers. One of the layers is the classification layer and the
other is the regression layer. Every point on the sliding window has features from
the real image. These points are called anchor points and every anchor point has to
have anchor boxes. When generating introduced anchor boxes scale and aspect ratios
are used. The aspect ratio is calculated as with of image divided by the height of the
image and the anchor box’s scale is the size of the image. As a result of representing
parts of the image, every point’s anchor boxes have to represent image dimensions.
the method uses strides to ensure representation the image’s sizes and generates k
different anchor boxes to obtain objects. The number of k consists of multiplying the
aspect ratio’s number and size of the scale points. The first assigned anchor boxes are
dummy boxes, which have very few accuracies to contain objects. Additionally to
this, some of the anchor boxes might not contain any objects, to fix this, the learning
operation is applied by the next layers. The class of the object and coordinates are
learned on labeled data. The intersection over union with the labeled data is calcu-
lated and the regressor layer learned the task on the rate of IOU. The coordinates of
the object are specified as offsets x,y,w,h by the regression layer. The center point of
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boxes are shown as x,y and the width and height of boxes are shown as w,h. data The
feature’s meaningfulness is protected while dimension reduction. At the end of the
classifier and regressor, there is an elimination process of results to avoid finding the
same object over and over. Non-maximum suppression is applied to the results and
reducing the number of region proposal network is boosting the speed of the main
model.

3.1.2 Dynamic Anchor Generation

In this thesis, we developed decoupled anchor dimensions to produce anchor sets for
feature points. After passing an image through a backbone network, we obtain a
feature map tensor. For anchor widths, we generate lengths ranging from 0 to w, and
for anchor heights, lengths ranging from 0 to h are generated. These generated boxes
with a combination of different sizes of w and h, labeled as positive and negative
on the step. After, we take Cartesian products of the dimensions to produce a set of
anchor boxes that intersect with objects having very different sizes and aspect ratios.
In order to control the number of anchors, parameter k is introduced. The k parameter
emerged experimentally and aimed to measure the effect of the number of anchor
boxes produced on the performance. With this parameter, w/k lengths for width and
h/k lengths for height are generated. The formula of total rectangles an mxn grid has
is given by (m + 1)n(n + 1)/4. With the inclusion of the k parameter, we generate
[(w + k)h(h+ k)] /(4k4) anchors in total.

To make clear to the method, the following example is given, consider a 768x768
image where a 48x48 feature map (w=48, h=48) is obtained from an image with
a stride value of 16. Setting k=1 produces 1,382,976 (100/100) anchors in total.
Increasing the value of k to 2 gives 90,000 (6.5/100) total anchors. Further increasing
the k value to 4 gives 6084 (0.04/100) anchors in sum. Producing too many anchors
requires a lot of computing power and complicates learning, but objects are covered
better. On the other hand, with less anchor, faster computations are made and the
learning task simplifies, but intersection rates with objects reduce especially for the
small objects. In Figure 30, a torch-like code of the anchor generation step is depicted.
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Figure 30: Dynamic Anchor Generation Code
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3.1.3 Network Architecture

Figure 31: Network architecture.

Our network architecture is depicted in Figure 31. The input image is fed into the
ResNet-101 backbone network and a feature tensor is obtained. As an example in
Figure 31, an image having 768 widths and 768 heights is fed into the backbone
network and a feature tensor with dimensions 48x48x1024 is obtained. The backbone
network is pre-trained with the Image-Net [88] dataset for the image classification
task and the classification head is discarded. For the training of the object detection
task, the weights of the backbone network are frozen.

It means the backbone network is used as a feature extractor. The backbone net-
work learns generic features and weights are frozen to not perturb learned weights
during object detection training. In order to learn proposal features specific to im-
ages a hidden representation layer with 3x3 convolution filters is used. This layer
outputs a tensor with the same dimensions as the input tensor. After this layer, two
classifications and one regression layer are used to classify anchors and learn offset
parameters. One classification layer for heights and one classification layer for width
is used. Classification layers have N output channels. W/(s∗k) and H/(s∗k) classes
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can be created for width and height lengths. For an average size 768x768 image, 48,
24, and 12 length classes can be constructed with k = 1, 2, 4 in order. Therefore, we
change the N value according to the k value in my experiments. The regression head
has 4 output channels. we force each feature point to make one prediction where one-
to-one matching with anchors and ground-truth objects is made which is explained in
the next section. The rest of the network is the same as Faster R-CNN where object
proposals are pooled with an ROI-Pooling operation and a feature tensor having the
same shape is obtained. Later, classification and regression heads are used to make
multi-class classification and regression fine-tuning.

3.1.4 Dynamic Label Assignment

The prediction boxes produced during the inference have a certain intersection with
the ground truth of the object but every anchor has different intersection-over-union
(IoU) ratios with ground-truth objects. Some anchors have high-overlapping with
objects, some of them barely intersect with objects and others have no intersection
with them. Since it will make it difficult for us to get healthy results, we need to
eliminate some of the boxes. The elimination method is done by labeling the box
as positive or negative by looking at the intersection of the produced boxes with the
ground truth and the area they have.

High-overlapping anchors should be labeled as positive, anchors having no or low
intersection should be labeled negative and in-between anchors should be ignored as
they can send noisy signals that can harm training.

Our labeling algorithm works as follows: All-pair IoU rates between anchors and
ground-truth objects in the related image are calculated. For each anchor box which
ground-truth box they have the maximum iou is found. For each ground-truth box,
anchor boxes that have the maximum iou with it are taken into account. Center points
of these anchor boxes are found and unique centers are stored. Then maximum iou of
each unique center is found. Finally, anchor boxes having maximum iou values are
saved. If any ground-truth box has a higher iou value than any other anchor with the
same center, the saved anchor box is replaced with the higher overlapping one. In this
way, elimination is made among the boxes with high intersections. After these steps,
some ground-truth boxes may have no assigned anchor boxes in the end. In order to
assign anchor boxes to these ground-truth boxes another loop is started. Anchors not
claimed by other anchors are sorted according to the iou values with the ground truth
in question and top anchors assigned to it.

With this procedure, although some ground-truth boxes have plenty of good over-
lapping anchor boxes, some anchors with low iou values are still assigned to these
ground-truth boxes (getting a positive label). To prevent the assignment of low iou
anchor boxes to the ground-truth boxes, we propose dynamic thresholding to elimi-
nate poor anchor boxes. This procedure works as follows: A set of threshold values
and a set of target counts are determined as hyper-parameters. For each ground-truth
object iou values of anchor boxes threshold-ed with predetermined threshold values
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and the number of anchors counted. The maximum threshold value of the threshold
values meeting the “anchor count is bigger than the target count” criteria is selected as
the threshold for the ground-truth box. Anchor boxes that can not meet this criterion
are labeled as ignored. Thus, we prevent ambiguous anchors from directing training.
Two mentioned procedures are given in Figure 32.

Figure 32: Assinging Dynamic Labels Code.

3.1.5 Producing Proposal Boxes

In this proposed method, as we made dimension decoupling and predictions are made
separately for each dimension, we need to merge results to form proposal boxes.
my bounding box proposal construction method works as follows: height and width
scores are calculated with the sigmoid function from logits. Unique center-width and
center-height triplets are found. Scores of remaining indices are ignored. This is
because not all anchor centers consist of all dimensions like in traditional RPN. For
example, the topmost and leftmost feature map point contains only a single (small-
est) anchor box. The reason for this is any other anchor would have excess image
dimensions.
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On the other hand, the feature map point that resides in the center of the feature map
has the most number of anchors. Figure 37 shows my anchor enumeration compared
to the RPN in which the same anchors for all feature map points are used. After
ignoring unrelated dimensions, we find the dimensions having maximum scores and
construct proposal boxes from these. As the last step, non-maximum suppression is
applied to remove highly overlapping proposals. My proposal generation algorithm
is given below.

3.1.6 Non-Maximum Suppression

Non-Maximum Suppression is an algorithm that is generally used in the last part
of the object detection models. At the end of the detection process, the proposed
object detection model predicts a lot of boxes. Some of them of these boxes can have
intersections with each other. The meaning of this, the algorithm produces predictions
for the same object but with different confidence scores. A successful deep learning
model could make only one estimation for each object and it must have high class
probability score. To achieve this goal, the NMS algorithm takes highest probability
bounding boxes and then, looks for intersection of over union with the other predicted
boxes. If the IoU is bigger than 0.5, omits the other predicted box. The algorithm
repeats this loop until eliminates the low scored bounding boxes and predicts only
one box with the highest confidence score.
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CHAPTER 4

EXPERIMENTS

4.1 Object Detection Datasets

The most commonly used and large scale dataset in object detection is Microsoft’s
Common Objects in Context. Generally, the new proposed algorithms’ success is
measured by their accuracy on the MS-COCO dataset.

Figure 33: Class instances comparison between MS-COCO and PASCAL VOC
datasets. Taken from [23].

MS-COCO is prepared to comprise commonly encountered objects in daily life and
consists of 328.000 images. The images are taken from complex scenes and have
2,500,000 labeled instances. Many computer vision studies are completed with COCO
dataset in areas of image classification, object detection, object recognition, human
pose-estimation and image segmentation. These images contain information like co-
ordinates of the object’s location, segmentation details and 17 key-points of human
objects. The dataset has 80 classes and is shown in Figure 33.

There are several different data label formats for an individual tasks like object detec-
tion, keypoint detection, stuff segmentation, panoptic segmentation, densepose, and
image captioning. The object detection label format is stored on JSON. The file has
information about a specific image’s name, id, object’s category, object coordinates
and segmentation information.

39



Figure 34: Example images from MS-COCO dataset. Taken from [23]

Thanks to having lots of objects in one image, the algorithms which are trained by
COCO have gained advantages to distinguish foreground objects from background
objects. The photos are given in Figure 34.

The other popular dataset in object detection is PASCAL VOC first introduced in
2005 with only 4 classes and 1578 images. From 2005 to 2012 the number of images
reaches 11,530 and the number of classes increased 20. Like MS-COCO dataset,
Pascal VOC, Figure 35 dataset also has images from real life with many different
objects in one image. The dataset is accepted as a benchmark dataset for image
classification and object detection.
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Figure 35: Example images from PASCAL VOC dataset. Taken from [24]

Annotations are kept in XML files and have location information of objects and this
information is easily read by the developers.

4.2 Evaluation Metrics

Evaluation metrics are globally accepted methods used to measure the performance
and accuracy of the developed algorithm. During training, the dataset is divided into
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two training and test datasets. The algorithm trained with the training dataset is tested
on the test dataset that it has never seen. During the test, the predictions of the algo-
rithm are compared with the ground lines of the test dataset and the prediction results
are recorded. According to the recorded results, true positive, true negative, false pos-
itive and false negative numbers are analyzed by following various procedures such
as Accuracy, Precision, Recall, Specificity and F1 score [93].

The fact that the algorithm contains correct results sheds light on whether the model
has learned the task. The accuracy of the algorithm is the ratio of correct results to all
correct or incorrect results.

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

Precision is a metric that measures how accurate are our predictions.

Precision =
TP

TP + FP
(2)

The precision metric has different types. There are two main types of precision met-
rics, based on the dimensions (small, medium and large) of the objects and the per-
centage of intersection of the ground line with the detection.

The average precision metric has a variation called APS (AP Small) that exclusively
assesses how well the model performs with regard to small items. It is crucial to
assess the model’s performance on small things individually because they are typi-
cally harder to identify than larger objects. AP Small is calculated in the same way
as the standard average precision measure, but only takes into account ground truth
boxes and detections that are narrower or taller. Depending on the task and dataset,
the precise meaning of small may change, but often, a threshold is set at a height or
width of less than 32 pixels. The threshold for medium-sized objects is set to a height
or width between 32 and 96 pixels. Objects larger than the specified dimensions are
called large objects. Precision abbreviations are shown as APM for medium objects
and APL for large objects.

With an emphasis on the high-recall portion of the curve, the AP50 [93] metric in
object detection assesses the precision-recall trade-off for a model’s object detections
at a specific intersection over union (IoU) threshold. A detection is only considered
a genuine positive by AP50 if its IoU with the ground-truth bounding box is at least
50/100. The precision-recall curve for the model’s detections is generated first, and
the average precision overall recall levels, up to a recall of 50/100, are then com-
puted to produce the AP50 measure. AP50 is a helpful indicator for evaluating the
performance of various models and is frequently used to assess the effectiveness of
object detection models. By percentage of intersection, the number next to the AP
may change (AP75 etc).
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Recall measures the rate of true positives over the predicted true samples. Average
Recall [93] is computed for a certain number of detections. For example, if we calcu-
late average recall for 100 detections, it is shown as AR100.

Recall =
TP

TP + FN
(3)

To find the F1 score, the harmonic mean is calculated using precision and recall val-
ues. The harmonic mean approaches 1, when precision and recall achieve high values
at the same time. If the F1 score is close to 1, it shows that the model is working
very successfully, and if it is close to 0, it shows that the model is far from making
predictions.

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(4)

Sensitivity calculates the proportion of correctly detected positive classes. This metric
gives how well the model does at recognizing a positive class.

Specificity =
TN

FP + TN
(5)

The graph between True Positive Rate and False Positive Rate is plotted using ROC
curves. Plots like this are produced at various classification levels. Therefore, if our
classification threshold is low, we can categorize more things as positive, which will
increase the number of both False Positives and True Positives. A typical ROC curve
is shown in Figure 36.

Figure 36: An example of ROC curve.
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4.3 Results

We did experiments on the COCO dataset [23] to evaluate our algorithm and compare
it with the region proposal network. Using various backbones, traditional RPN and
the DA2RPN method that we recommend were compared by looking at the average
recall and average precision values. Comparison results are shown in Table 1. Ini-
tially, 100, 300 and 1000 proposals were produced and results were obtained for the
ResNet-50-FPN backbone. Then, the observations are given for the deeper convo-
lutional neural networks ResNet-100-FPN and ResNext-100-FPN, keeping the RPN
method constant. Average recall results increase when the model is trained with a
deeper backbone and more proposals with the RPN method. The performance of the
proposed DA2RPN method was examined by keeping constant the backbones used
to produce the result for the RPN method.

Table 1: Comparison of the recall values of RPN and proposed method with respect
to the number of anchors generated.

Method Backbone AR100 AR300 AR1000

RPN [15] ResNet-50-FPN 42.5 51.2 57.1
RPN [15] ResNet-101-FPN 45.4 53.2 58.7
RPN [15] ResNext-101-FPN 47.8 55.0 59.8
DA2RPN ResNet-50-FPN 44.0 52.9 58.4
DA2RPN ResNet-101-FPN 47.2 54.8 59.3
DA2RPN ResNext-101-FPN 49.5 56.2 60.1

Our method involves the k parameter which controls the anchor number in the anchor
generation step. We investigated the effect of this parameter in our experiments. k
parameter directly affects the number of generated anchor boxes. When k equals 1,
the most numbers of anchor boxes are proposed and when k equals 4, the least number
of anchor boxes are generated. The optimal values are obtained when k equals 2. The
reason that getting the lowest values when k equals 4 is the method proposed the least
number of boxes. Therefore, the algorithm cannot find the object’s true location. The
results are shown in Table 2.

Table 2: The effects of the k parameter over the proposed method.

Method AP AP50 AP75 APS APM APL

Baseline 35.9 58.0 38.4 21.2 39.5 46.4
DA2-RPN (k=1) 37.1 58.7 39.2 22.3 40.4 47.2
DA2-RPN (k=2) 38.4 59.9 40.3 23.6 41.5 48.2
DA2-RPN (k=4) 33.4 53.2 34.5 20.1 36.9 43.8
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Table 3 depicts the effect of the proposed modules. When Dynamic Anchor and
Dynamic Thresholding modules are applied separately, both of the modules increase
the accuracy of the baseline method. When we applied two of them at the same time.
We obtained the best results and AP metric increased from 35.9 to 38.4.

Table 3: Average recall and precision scores when the proposed method are applied
to baseline.

Module AR100 AR1000 AP50 AP

Baseline 42.5 57.1 58 35.9
Dynamic Anchor 43.1 57.8 58.9 37.1

Dynamic Thresholding 43.3 57.9 59.0 37.3
Both Modules 44.0 58.4 59.9 38.4

Our region proposal method’s example proposed regions, over an image belongs to
MS-COCO dataset, are shown in Figure 37. Traditional RPN method’s example pro-
posed regions, from an image belongs to MS-COCO dataset, are shown in Figure
38. The results of the popular and most used object detection method’s results on
MS-COCO dataset are shown in Table 4.

Table 4: Detection Algorithms’ scores on MS-COCO dataset.

Method Backbone AP AP50 AP75 APS APM APL

YOLOv2 [11] DarkNet-19 21.6 44 19.2 5 22.4 35.5
SSD [9] ResNet-101-SSD 31.2 50.4 33.3 10.2 34.5 49.8

Faster R-CNN [15] ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2
RetinaNet [16] ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2
RetinaNet [16] ResNext-101-FPN 40.8 61.1 44.1 24.1 44.2 51.2
YOLOv3 [89] Darknet-53 33 57.9 34.4 18.3 35.4 41.9

FCOS [19] ResNet-50 37.1 55.9 39.8 21.3 41.0 47.8
CornerNet [18] ResNet-50 40.5 56.5 43.1 19.4 42.7 53.9

45



Figure 37: Our method’s generated anchor boxes

Figure 38: Traditional RPN method generated anchor boxes
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CHAPTER 5

CONCLUSION

Although the traditional region suggestion method is critical to the performance of
2-stage object detection methods, because it uses a fixed size and number of anchors
and fixed thresholds, it doesn’t take full advantage of its anchor usage potential. To
address these shortcomings, we proposed a method that improves both generating
anchors and assigning anchors to ground truth objects.

The method we propose assigns different sizes and numbers of anchors to the ex-
tracted feature points and does not produce unnecessary anchors in places where it
is unlikely that an object of that size will exist. On the other hand, it produces many
anchors of different sizes in the midpoints of the image where objects of all sizes can
be located. In addition, even if the IoU value of the anchors produced for each object
is the same, they are not of the same quality, so object-specific threshold values are
determined, thus providing a higher quality anchor tag assignment.

Thanks to these two modules we recommend, the region proposal network has been
able to use anchors more effectively and it has been observed that the performance
in object detection datasets has increased. In future studies, it is aimed to reduce the
cost of calculation speed by eliminating unnecessary anchors by using the attention
mechanism and to increase the performance by providing smoother training.
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